Graph Distillation for Action Detection with Privileged Information

نویسندگان

  • Zelun Luo
  • Lu Jiang
  • Jun-Ting Hsieh
  • Juan Carlos Niebles
  • Li Fei-Fei
چکیده

In this work, we propose a technique that tackles the video understanding problem under a realistic, demanding condition in which we have limited labeled data and partially observed training modalities. Common methods such as transfer learning do not take advantage of the rich information from extra modalities potentially available in the source domain dataset. On the other hand, previous work on cross-modality learning only focuses on a single domain or task. In this work, we propose a graph-based distillation method that incorporates rich privileged information from a large multi-modal dataset in the source domain, and shows an improved performance in the target domain where data is scarce. Leveraging both a large-scale dataset and its extra modalities, our method learns a better model for temporal action detection and action classification without needing to have access to these modalities during test time. We evaluate our approach on action classification and temporal action detection tasks, and show that our models achieve the state-of-the-art performance on the PKU-MMD and NTU RGB+D datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection under Privileged Information

Modern detection systems use sensor outputs available in the deployment environment to probabilistically identify attacks. These systems are trained on past or synthetic feature vectors to create a model of anomalous or normal behavior. Thereafter, run-time collected sensor outputs are compared to the model to identify attacks (or the lack of attack). While this approach to detection has been p...

متن کامل

Unifying distillation and privileged information

Distillation (Hinton et al., 2015) and privileged information (Vapnik & Izmailov, 2015) are two techniques that enable machines to learn from other machines. This paper unifies the two into generalized distillation, a framework to learn from multiple machines and data representations. We provide theoretical and causal insight about the inner workings of generalized distillation, extend it to un...

متن کامل

Generalized Distillation Framework for Speaker Normalization

Generalized distillation framework has been shown to be effective in speech enhancement in the past. We extend this idea to speaker normalization without any explicit adaptation data in this paper. In the generalized distillation framework, we assume the presence of some “privileged” information to guide the training process in addition to the training data. In the proposed approach, the privil...

متن کامل

Learning with Privileged Information for Multi-Label Classification

In this paper, we propose a novel approach for learning multi-label classifiers with the help of privileged information. Specifically, we use similarity constraints to capture the relationship between available information and privileged information, and use ranking constraints to capture the dependencies among multiple labels. By integrating similarity constraints and ranking constraints into ...

متن کامل

Robust Speech Recognition Using Generalized Distillation Framework

In this paper, we propose a noise robust speech recognition system built using generalized distillation framework. It is assumed that during training, in addition to the training data, some kind of ”privileged” information is available and can be used to guide the training process. This allows to obtain a system which at test time outperforms those built on regular training data alone. In the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1712.00108  شماره 

صفحات  -

تاریخ انتشار 2017